The botanist keeps tasting tea

A gentle introduction to e-values and sequential statistical inference

Ian Waudby-Smith

Department of Statistics, UC Berkeley

Miller retreat, 2024

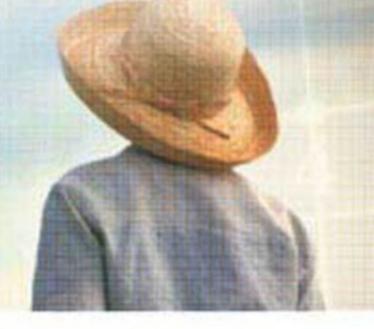
THE LADY TASTING TEA

HOW STATISTICS

REVOLUTIONIZED SCIENCE

IN THE

TWENTIETH CENTURY



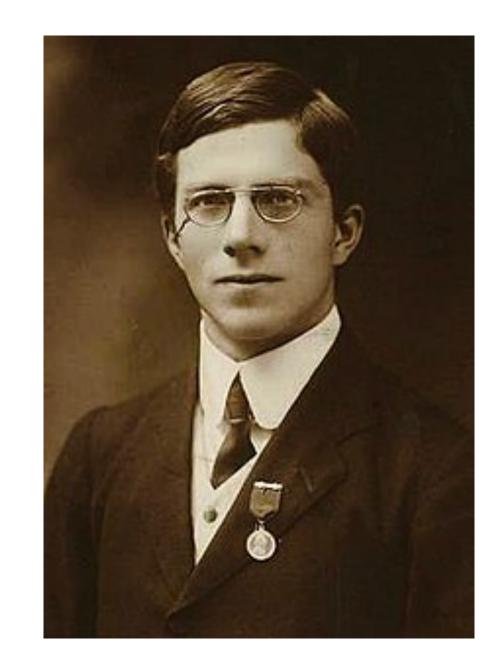
DAVID SALSBURG

"A fascinating description of the kinds of people who interacted, collaborated, disagreed, and were brilliant in the development of statistics."

—Barbara A. Bailar, National Opinion research Center

Ronald Fisher

Muriel Bristol



Ronald Fisher

Would you like some tea?

Muriel Bristol

Ronald Fisher

Would you like some tea?

No,T in $M \neq M$ in T

Muriel Bristol

Ronald Fisher

Would you like some tea?

 $No, T in M \neq M in T$

Can you really tell them apart?

Muriel Bristol

Ronald Fisher

Would you like some tea?

No, T in $M \neq M$ in T

Can you really tell them apart?

Indeed, yes!

Muriel Bristol

Ronald Fisher

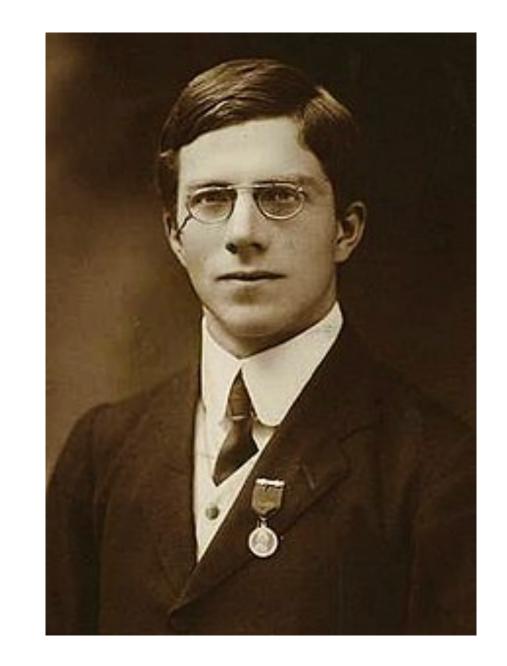
Would you like some tea?

 $No, T in M \neq M in T$

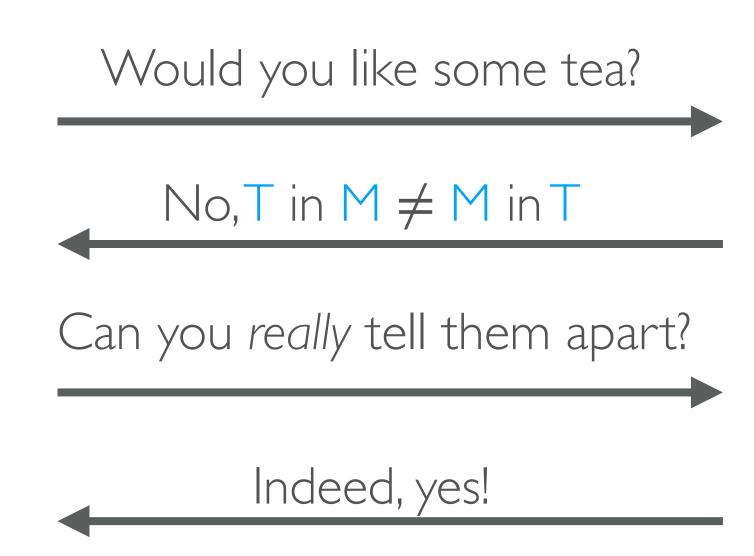
Can you really tell them apart?

Indeed, yes!

Muriel Bristol

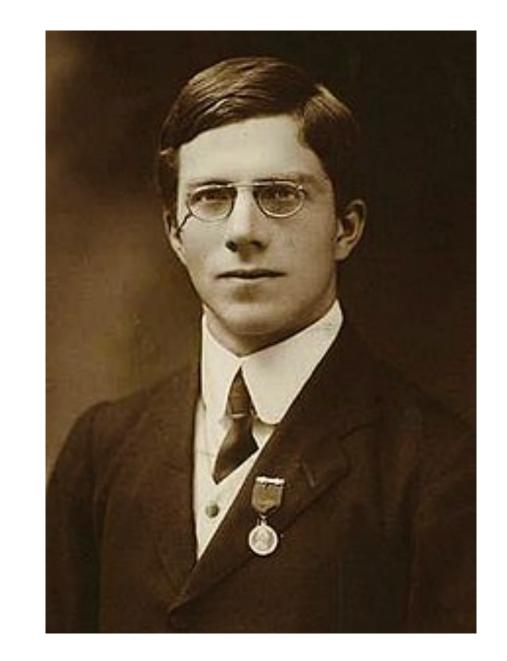


Ronald Fisher

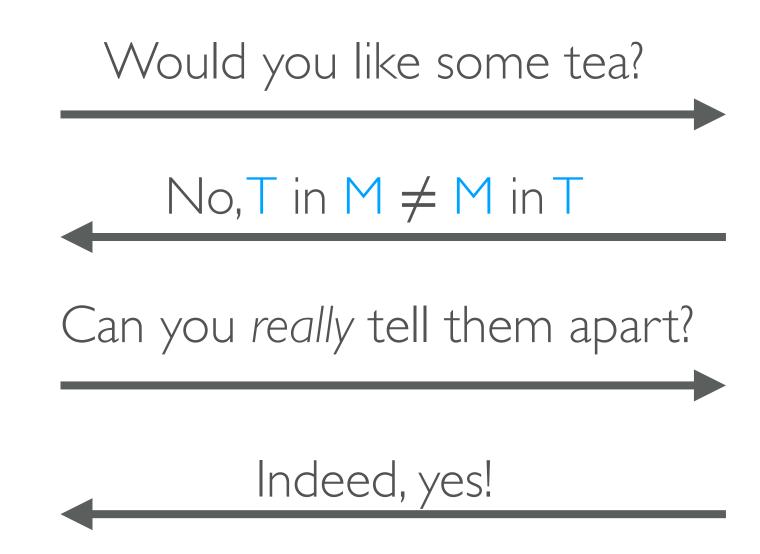


Muriel Bristol

What's the probability that a chance guess would be perfect? $1/70 \approx 0.014$



Ronald Fisher



Muriel Bristol

What's the probability that a chance guess would be perfect? $1/70 \approx 0.014$

This is a p-value for H_0 : Muriel cannot distinguish bywn MT and TM.

However, the odds were stacked against Muriel from the start!

However, the odds were stacked against Muriel from the start!

The probability that a chance guess would yield at most one error is $17/70 \approx 0.24$, which is not so impressive.

However, the odds were stacked against Muriel from the start!

The probability that a *chance guess* would yield *at most one* error is $17/70 \approx 0.24$, which is not so impressive.

If she had made exactly one mistake, could we just let her keep tasting tea?

No, this is blatant p-hacking.

However, the odds were stacked against Muriel from the start!

The probability that a chance guess would yield at most one error is $17/70 \approx 0.24$, which is not so impressive.

If she had made exactly one mistake, could we just let her keep tasting tea? No, this is blatant p-hacking.

That is, the type-I error is not controlled: $\mathbb{P}_{H_0}(P_{\tau} \leq 0.05) \nleq 0.05$.

$$\mathbb{P}_{H_0}(P_{\tau} \le 0.05) \nleq 0.05$$

An $\emph{e}\text{-value}$ is a function \emph{E} of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

An e-value is a function E of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

An
$$\emph{e}\text{-value}$$
 is a function \emph{E} of the data (MT or TM) so that

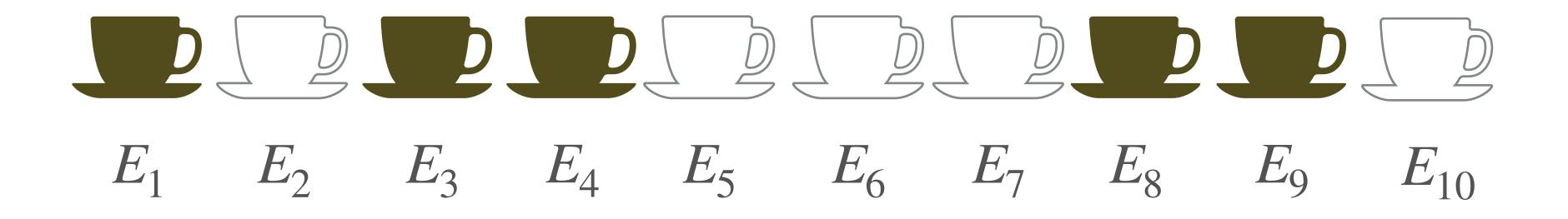
$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

An
$$\emph{e}\text{-value}$$
 is a function \emph{E} of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

An e-value is a function E of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.



An
$$e$$
-value is a function E of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

$$E_1$$
 E_2 E_3 E_4 E_5 E_6 E_7 E_8 E_9 E_{10}

An
$$e$$
-value is a function E of the data (MT or TM) so that

$$E \ge 0$$
 and $\mathbb{E}_{H_0}(E) \le 1$.

Suppose Muriel keeps tasting tea:

$$E_1$$
 E_2 E_3 E_4 E_5 E_6 E_7 E_8 E_9 E_{10}

Then, $\mathbb{P}_{H_0}\left(P_{\tau}^{\star} \leq 0.05\right) \leq 0.05$, at any data-dependent sample size τ !

where
$$P_n^{\star} := \begin{pmatrix} E_1 \cdot E_2 & \cdots & E_n \end{pmatrix}^{-1}$$
.

Thank you!

ianws.com

Ian Waudby-Smith

Department of Statistics, UC Berkeley

Miller retreat, 2024